$$L^p$$-spectral Triples and p-Quantum Compact Metric Spaces Journal Article uri icon

Overview

abstract

  • Abstract; ; For; ; ; $$p in [1, infty )$$; ; ; p; ; [; 1; ,; ; ); ; ; ; ; , we generalize the concept of classical spectral triples by extending the framework from Hilbert spaces to; ; ; $$L^p$$; ; ; L; p; ; ; ; ; -spaces, and from C*-algebras to; ; ; $$L^p$$; ; ; L; p; ; ; ; ; -operator algebras. In addition, we define an; ; ; $$L^p$$; ; ; L; p; ; ; ; ; -spectral triple to be metric when the state space of the algebra has a; p; -quantum compact metric space structure. Specifically, we construct; ; ; $$L^p$$; ; ; L; p; ; ; ; ; -spectral triples for reduced; ; ; $$L^p$$; ; ; L; p; ; ; ; ; -group algebras of countable discrete groups with proper length functions and also for; ; ; $$L^p$$; ; ; L; p; ; ; ; ; UHF-algebras of infinite tensor product type, the latter inspired by E. Christensen and C. Ivan’s construction of a Dirac operator on AF C*-algebras. We prove that; ; ; $$L^p$$; ; ; L; p; ; ; ; ; -spectral triples associated with; ; ; $$L^p$$; ; ; L; p; ; ; ; ; -group algebras (provided that the length function is of bounded doubling) and those associated with; ; ; $$L^p$$; ; ; L; p; ; ; ; ; UHF-algebras are always metric.;

publication date

  • February 1, 2026

Date in CU Experts

  • January 22, 2026 4:52 AM

Full Author List

  • Delfín A; Farsi C; Packer J

author count

  • 3

Other Profiles

International Standard Serial Number (ISSN)

  • 1069-5869

Electronic International Standard Serial Number (EISSN)

  • 1531-5851

Additional Document Info

volume

  • 32

issue

  • 1

number

  • 10