abstract
- Photoredox catalysis driven by visible light has improved chemical synthesis by enabling milder reaction conditions and unlocking distinct reaction mechanisms. Despite the transformative impact, visible-light photoredox catalysis remains constrained by the thermodynamic limits of photon energy and inefficiencies arising from unproductive back electron transfer, both of which become particularly pronounced in thermodynamically demanding reactions. In this work, we introduce an organic photoredox catalyst system that overcomes these obstacles to drive chemical transformations that require super-reducing capabilities. This advancement is accomplished by coupling the energy of two photons into a single chemical reduction, whereas inefficiencies from back electron transfer are mitigated through a distinct proton-coupled electron transfer mechanism embedded in the catalyst design. The super-reducing capabilities of this organic catalyst system are demonstrated through efficient application in a broad scope of challenging arene reductions.