Arctic halogens reduce ozone in the northern mid-latitudes Journal Article uri icon

Overview

abstract

  • While the dominant role of halogens in Arctic ozone loss during spring has been widely studied in the last decades, the impact of sea-ice halogens on surface ozone abundance over the northern hemisphere (NH) mid-latitudes remains unquantified. Here, we use a state-of-the-art global chemistry-climate model including polar halogens (Cl, Br, and I), which reproduces Arctic ozone seasonality, to show that Arctic sea-ice halogens reduce surface ozone in the NH mid-latitudes (47°N to 60°N) by ~11% during spring. This background ozone reduction follows the southward export of ozone-poor and halogen-rich air masses from the Arctic through polar front intrusions toward lower latitudes, reducing the springtime tropospheric ozone column within the NH mid-latitudes by ~4%. Our results also show that the present-day influence of Arctic halogens on surface ozone destruction is comparatively smaller than in preindustrial times driven by changes in the chemical interplay between anthropogenic pollution and natural halogens. We conclude that the impact of Arctic sea-ice halogens on NH mid-latitude ozone abundance should be incorporated into global models to improve the representation of ozone seasonality.

publication date

  • September 24, 2024

Date in CU Experts

  • June 11, 2025 4:31 AM

Full Author List

  • Fernandez RP; Berná L; Tomazzeli OG; Mahajan AS; Li Q; Kinnison DE; Wang S; Lamarque J-F; Tilmes S; Skov H

author count

  • 12

Other Profiles

International Standard Serial Number (ISSN)

  • 0027-8424

Electronic International Standard Serial Number (EISSN)

  • 1091-6490

Additional Document Info

volume

  • 121

issue

  • 39