Estimation of the radiation budget during MOSAiC based on ground-based and satellite remote sensing observations Journal Article uri icon

Overview

abstract

  • Abstract. An accurate representation of the radiation budget is essential for investigating the impact of clouds on the climate system, especially in the Arctic, an environment highly sensitive to complex and rapid environmental changes. In this study, we analyse a unique dataset of observations from the central Arctic made during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition in conjunction with state-of-the-art satellite products from CERES (Clouds and the Earth's Radiant Energy System) to investigate the radiative effect of clouds and radiative closure at the surface and the top of the atmosphere (TOA). We perform a series of radiative transfer simulations using derived cloud macro- and microphysical properties as inputs to the simulations for the entire MOSAiC period, comparing our results to collocated satellite products and ice-floe observations. The radiative closure biases were generally within the instrumental uncertainty, indicating that the simulations are sufficiently accurate to reproduce the radiation budget during MOSAiC. Comparisons of the simulated radiation budget relative to CERES show similar values in the terrestrial flux but relatively large differences in the solar flux, which are attributed to a lower surface albedo and a possible underestimation of atmospheric opacity by CERES. While the simulation results were consistent with the observations, more detailed analyses reveal an overestimation of simulated cloud opacity for cases involving geometrically thick ice clouds. In the annual mean, we found that, during the MOSAiC expedition, the presence of clouds leads to a loss of 5.2 W m−2 of the atmosphere–surface system to space, while the surface gains 25.0 W m−2 and the atmosphere is cooled by 30.2 W m−2.;

publication date

  • April 8, 2025

Date in CU Experts

  • April 16, 2025 2:44 AM

Full Author List

  • Barrientos-Velasco C; Cox CJ; Deneke H; Dodson JB; Hünerbein A; Shupe MD; Taylor PC; Macke A

author count

  • 8

Other Profiles

Electronic International Standard Serial Number (EISSN)

  • 1680-7324

Additional Document Info

start page

  • 3929

end page

  • 3960

volume

  • 25

issue

  • 7