Thirstwaves: Prolonged Periods of Agricultural Exposure to Extreme Atmospheric Evaporative Demand for Water Journal Article uri icon

Overview

abstract

  • AbstractGlobal atmospheric evaporative demand has increased, impacting agricultural productivity and water use. Traditionally, trend assessments have been limited to total evaporative demand, overlooking shifts in daily extremes, which are meaningful for agrohydrological outcomes yet largely unknown. Here, using a fully physical metric of evaporative demand, that is, standardized short crop reference evapotranspiration, we introduce the concept of thirstwaves—prolonged periods of extremely high evaporative demand—and analyze their characteristics during 1981–2021 growing seasons for the conterminous US. Findings show that long‐term mean spatial patterns demonstrated by thirstwave characteristics do not follow that of total or mean evaporative demand. Weighted for cropland area harvested, thirstwave intensity, duration, and frequency have increased by 0.06 mm d−1 decade−1, 0.10 days decade−1, and 0.39 events decade−1, respectively during 1981–2021. Statistically significant trends appear across 17%, 7%, and 23% of cropland area for intensity, frequency, and duration. Not only have thirstwaves increased in severity, but the likelihood of no thirstwaves occurring during the growing season has significantly decreased. Our work proposes a novel metric to describe periods of extremely elevated evaporative demand and presents a systematic analysis of such conditions historically for US croplands.

publication date

  • March 1, 2025

Date in CU Experts

  • April 2, 2025 4:32 AM

Full Author List

  • Kukal MS; Hobbins M

author count

  • 2

Other Profiles

International Standard Serial Number (ISSN)

  • 2328-4277

Electronic International Standard Serial Number (EISSN)

  • 2328-4277

Additional Document Info

volume

  • 13

issue

  • 3