Impacts of Terrain Slope and Surface Roughness Variations on Turbulence Generation in the Nighttime Stable Boundary Layer Journal Article uri icon

Overview

abstract

  • AbstractTerrain slopes with and without upslope large surface roughness impact downstream shear‐generated turbulence differently in the nighttime stable boundary layer (SBL). These differences can be identified through variations in the relationship between turbulence and wind speed at a given height, known as the HOckey STick (HOST) transition, as compared to the HOST relationship over flat terrain. The transport of cold surface air from elevated uniform terrain reduces downstream air temperature not much air stratification. As terrain slope rises, the increasing cold and heavy air enhances downstream hydrostatic imbalance, resulting in increasing turbulence for a given wind speed. That is, the rate of turbulence increase with wind speed from downslope flow is independent of terrain slope. Upslope large surface roughness elements enhance vertical turbulent mixing, elevating cold surface air from the terrain. Horizontal transport of this elevated, cold, turbulent air layer reduces the downstream upper warm air temperature. Benefiting from the progressive reduction of downstream stable stratification with increasing height in the SBL, wind shear can effectively generate strong turbulence. In addition to the turbulence enhancement from the cold downslope flow, the rate of turbulence increase with wind speed is elevated. This study demonstrates key physical mechanisms for turbulence generation captured by the HOST relationship. It also highlights the influence of terrain features on these mechanisms through deviations from the HOST relationship over flat terrain.

publication date

  • March 28, 2025

Date in CU Experts

  • March 20, 2025 12:17 PM

Full Author List

  • Sun J; Bhimireddy SR; Kristovich DAR; Wang J; Hiscox AL; Mahrt L; Petty GW

author count

  • 7

Other Profiles

International Standard Serial Number (ISSN)

  • 2169-897X

Electronic International Standard Serial Number (EISSN)

  • 2169-8996

Additional Document Info

volume

  • 130

issue

  • 6