abstract
- Disparate bodies of literature implicate risk avoidance and energy conservation as important drivers of animal movement decisions. Theory posits that these phenomena interact in ecologically consequential ways, but rigorous empirical tests of this hypothesis have been hampered by data limitations. We fuse fluid dynamics, telemetry, and attack data to reconstruct risk and energy landscapes traversed by migrating juvenile salmon and their predators. We find that migrants primarily use midriver microhabitats that facilitate migration at night. During daylight, predators become more aggressive in the midriver, and prey reduce midriver use in favour of nearshore microhabitats, resulting in increased energy expenditure and decreased migration efficiency. Predators attack most when migrants are not prioritising threat avoidance and during ephemeral periods of low lighting. Our findings suggest that predator-prey interactions result from an interplay between landscapes of fear and energy, which can determine the degree to which predators affect prey through mortality or fear.